Structural identification and in vitro antioxidant activities of anthocyanins in black chokeberry (Aronia melanocarpa Elliot)
Jun Li 1
Bin Du 2
More details
Hide details
College of Food Science and Technology, Hebei Normal University of Science and Technology, China
Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, P.R. of China
Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Submission date: 2021-10-29
Final revision date: 2021-11-06
Acceptance date: 2021-11-09
Online publication date: 2021-12-13
Publication date: 2021-12-20
Corresponding author
Bin Du   

Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, China
eFood 2021;2(4):201-208
Anthocyanins is a natural edible pigment with many health benefits. The aim of this work was the identification of anthocyanins present in Aronia melanocarpa using mass spectrometric features. The anthocyanins of the A. melanocarpa were analyzed by UV-Vis, HPLC-DAD and LC-EIS/MS methods. The four important anthocyanins were identified as follows: cyanidin-3-galactoside (68.68%), cyanidin-3-arabinoside (25.62%), cyanidin-3-glucoside (5.28%) and cyanidin-3-xyloside (0.42%). Among the four anthocyanin monomers, three anthocyanins with the highest content of A. melanocarpa were selected, and the antioxidant activity was studied with the total anthocyanins. The antioxidant capacity was cyanidin-3-galactoside > total anthocyanin > cyanidin-3-arabinoside > cyanidin-3-glucoside. The activity of the four anthocyanin samples was greater than ascorbic acid. The methodology described in this study will provide an effective tool for anthocyanins identification. Our results suggested that anthocyanins from A. melanocarpa exhibited effective antioxidant activity. These findings may be crucial in future research concerning chokeberry based functional food products.
Wawer I, Wolniak M, Paradowska K. Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nuclear Magnetic Resonance. 2006;30:106–113. doi:10.1016/j.ssnmr.2006.05.001.
Slimestad R, Torskangerpoll K, Nateland HS. Flavonoids from black chokeberries, Aronia melanocarpa. Journal of Food Composition and Analysis. 2005;18(1):61–68. doi:10.1016/j.jfca.2003.12.003.
Krenn L, Steitz M, Schlicht C. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements– analysis with problems. Pharmazie Die. 2007;62(11):803–812.
Maodobry M, Bieniasz M, Dziedzic E. Evaluation of the yield and some components in the fruit of blue honeysuckle (Lonicera caerulea var Turcz. Freyn.). . Folia Horticulturae. 2010;(1):45–50. doi:10.2478/fhort-2013-0150.
Wu X, Gu L, Prior RL, Mckay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry. 2004;52(26):7846–56. doi:10.1021/jf0486850.
Lehman H. Die Aroniabeere und ihre Verarbeitung. Flüssiges Obst. 1990;57:746–752.
Tanaka T, Tanaka A. Chemical components and characteristics of black chokeberry; 1988.
Ara VS, Aronia. Gesund-und bald “in aller Munde. Flüssiges Obst. 2002;(10):653–658.
Razungles A, Oszmianski J, Sapis JC. Determination of carotenoids in rruits of Rosa sp. (Rosa Canina and Rosa Rugosa) and of chokeberry (Aronia Melanocarpa). Journal of Food Science. 2008;54(3):774–775. doi:10.1111/j.1365- 2621.1989.tb04709.x.
Zlatanov MD. Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. Journal of the Science of Food and Agriculture. 1999;79:1620–1624. doi:10.1002/(SICI)1097- 0010(199909)79:12<1620::AID-JSFA410>3.0.CO;2-G.
Sonoda K, Aoi W, Iwata T, Li Y. Anthocyanin-rich Aronia melanocarpa extract improves body temperature maintenance in healthy women with a cold constitution. Springerplus. 2013;2(1):1–5. doi:10.1186/2193-1801-2-626.
Chandra RD, Prihastyanti MNU, Lukitasari DM. Effects of pH High Pressure Processing, and Ultraviolet Light on Carotenoids, Chlorophylls, and Anthocyanins of Fresh Fruit and Vegetable Juices. eFood. 2021;2:113–124. doi:https://dx.doi.org/10.2991/efo....
Wei J, Zhang G, Zhang X, Xu D, Gao J, Fan J. Anthocyanins from black chokeberry (Aronia melanocarpa Elliot) delayed aging-related degenerative changes of brain. Journal of Agricultural and Food Chemistry. 2017;65:5973–5984. doi:10.1021/acs.jafc.7b02136.
Valchevakuzmanova S, Gadjeva V, Ivanova D. Antioxidant activity of Aronia melanocarpa fruit juice in vitro. Acta Alimentaria. 2007;36(4):425–428. doi:10.1556/aalim.36.2007.4.5.
Termentzi A, Kefalas P, Kokkalou E. Antioxidant activities of various extracts and fractions of Sorbus domestica fruits at different maturity stages. . Food Chemistry. 2006;98:599–608. doi:10.1016/j.foodchem.2005.06.025.
Stanisavljević N, Samardžić J, Janković T, Šavikin K, Mojsin M, Topalović V, et al. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix. . Food Chemistry. 2015;175:516–522. doi:10.1016/j.foodchem.2014.12.009.
Hou DX, Yanagita T, Uto T. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochemical Pharmacology. 2005;70(3):417–425. doi:10.1016/j.bcp.2005.05.003.
Howell AB. Cranberry proanthocyanins and the maintenance of urinary tract health. Critical Reviews in Food Science and Nutrition. 2002;p. 273–278. doi:10.1080/10408390209351915.
Martin DA, Taheri R, Brand MH, Draghi A, Sylvester FA, Bolling BW. Anti-inflammatory activity of aronia berry extracts in murine splenocytes. Journal of Functional Foods. 2014;8:68–75. doi:10.1016/j.jff.2014.03.004.
Bijak M, Saluk J, Antosik A. Aronia melanocarpa as a protector against nitration of fibrinogen. International Journal of Biological Macromolecules. 2013;55:264–268. doi:10.1016/j.ijbiomac.2013.01.019.
Kasprzak-Drozd K, Oniszczuk T, Soja J, Gancarz M, Wojtunik-Kulesza K, Markut-Miotła E, et al. The efficacy of black chokeberry fruits against cardiovascular diseases. International Journal of Molecular Sciences. 2021;(12):6541– 6541. doi:10.3390/ijms22126541.
Wen H, Cui H, Tian H, Zhang X, Ma L, Ramassamy C, et al. Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods;2020(1):63–63. doi:10.3390/foods10010063.
Kim B, Ku CS, Pham TX. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutrition Research. 2013;(5):406–413. doi:10.1016/j.nutres.2013.03.001.
Si X, Tian J, Shu C, Wang Y, Gong E, Zhang Y, et al. Serum ceramide reduction by blueberry anthocyanin-rich extract alleviates insulin resistance in hyperlipidemia mice. Journal of Agricultural and Food Chemistry;2020(31):8185–8194. doi:10.1021/acs.jafc.0c01931.
Malik M, Zhao C, Schoene N. Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells. Nutrition Cancer. 2003;46(2):186– 196. doi:10.1207/s15327914nc4602_12.
Valcheva-Kuzmanova S, Marazova K, Krasnaliev I. Effect of Aronia melanocarpa fruit juice on indomethacin- induced gastric mucosal damage and oxidative stress in rats. Experimental and Toxicologic Pathology. 2005;56(6):385–392. doi:10.1016/j.etp.2005.01.001.
Ohgami K, Ilieva I, Shiratori K. Anti-inflammatory effects of Aronia extract on rat endotoxin-induced uveitis. Investigative Ophthalmology & Visual Science. 2005;46(1):275–275. doi:10.1167/iovs.04-0715.
Peng Z, Hu X, Li X, Jiang X, Deng L, Hu Y, et al. Protective effects of cyanidin-3-O-glucoside on UVB-induced chronic skin photodamage in mice via alleviating oxidative damage and anti-inflammation. Food Frontiers. 2020;1(3):213–223. doi:10.1002/fft2.26.
Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical biochemistry. 1996;1(1):70–76. doi:10.1006/abio.1996.0292.
Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science. 2007;72:159–166. doi:10.1111/j.1750- 3841.2006.00260.x.
Li Y, Jiang B, Zhang T. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry. 2008;106(2):444–450. doi:10.1016/j.foodchem.2007.04.067.
Sánchez-Ilárduya MB, Sánchez-Fernández C, Garmón-Lobato S, Viloria-Bernal M, Abad-García B, Berrueta L. Tentative identification of pyranoanthocyanins in rioja aged red wines by high-performance liquid chromatography and tandem mass spectrometry. Australian Journal of Grape and Wine Research. 2014;20(1):31–40. doi:10.1111/ajgw.12061.
Han FL, Xu Y. Effect of the structure of seven anthocyanins on self-association and colour in an aqueous alcohol solution. South African Journal for Enology and Viticulture. 2015;36(1):105–116.
Abad-García B, Berrueta LA, Garmón-Lobato S, Gallo B, Vicente F. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Agricultural and Food Chemistry. 2009;(28):5398– 5415. doi:10.1016/j.chroma.2009.05.039.
Bozin B, Mimica-Dukic N, Samojlik I. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). . Food Chemistry. 2008;111:925–929. doi:10.1016/j.foodchem.2008.04.071.
Wang H, Race EJ, Shrikhande AJ. Characterization of anthocyanins in grape juices by Ion trap liquid chromatography mass spectrometry. Journal of Agricultural and Food Chemistry. 2003;51(7):1839–1844. doi:10.1021/jf0260747.
Oszmiański J, Wojdylo A. Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology. 2005;221:809–813. doi:10.1007/s00217-005-0002-5.
Jakobek L, Seruga M, Medvidovic-Kosanovic M, Novak I. Anthocyanin content and antioxidant activity of various red fruit juices. Dtsch Lebensmitt Rundsch. 2007;103:58–64.
Liu RH, Yu BY, Qiu SX, Bai GC. Study on scavenging activities for superoxide anion radicals (O2.-) and structure- activity relationship of polyphenolic compounds from leaves of crataegus. Journal of Chinese Pharmaceutical Sciences. 2005;(14):1066–1069.
Journals System - logo
Scroll to top