REVIEW PAPER
A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value
 
More details
Hide details
1
Institute of Chinese Medical Sciences, University of Macau, Macau
 
2
School of Pharmacy, University of Camerino, via Sant’ Agostino 1, 62032 Camerino, Italy
 
3
Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
 
4
Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
 
5
Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo P.B. 11562, Egypt
 
6
Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
 
7
Department of Analytical Chemistry and Food Science, University of Vigo, Spain
 
 
Submission date: 2021-11-01
 
 
Acceptance date: 2021-11-01
 
 
Online publication date: 2021-12-17
 
 
Publication date: 2021-12-20
 
 
Corresponding author
Jianbo Xiao   

Department of Analytical Chemistry and Food Science, University of Vigo, Spain
 
 
eFood 2021;2(4):164-184
 
KEYWORDS
TOPICS
ABSTRACT
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
REFERENCES (142)
1.
Liu RH. Dietary Bioactive Compounds and Their Health Implications. Journal of Food Science. 2013;78(s1):18–25. doi:10.1111/1750-3841.12101.
 
2.
Cisneros-Zevallos L. The power of plants: how fruit and vegetables work as source of nutraceuticals and supplements. International Journal of Food Sciences and Nutrition. 2021;72(5):660–664. doi:10.1080/09637486.2020.1852194.
 
3.
Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and Biological Activities of Natural Polyphenols. Nutrients. 2014;6(12):6020–6047. doi:10.3390/nu6126020.
 
4.
Tomás-Barberán FA, Andrés-Lacueva C. Polyphenols and Health: Current State and Progress. Journal of Agricultural and Food Chemistry. 2012;60(36):8773–8775. doi:10.1021/jf300671j.
 
5.
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. Journal of Nutritional Science. 2016;5:e47. doi:10.1017/jns.2016.41.
 
6.
Gao W, Lee SU, Li J, Lee JW. Development of Improved Process with Treatment of Cellulase for Isolation of Ampelopsin from Dried Fruits of Ampelopsis grossedentata. BioResources. 2016;11(1):2712–2722. doi:10.15376/biores.11.1.2712-2722.
 
7.
Sun CC, Li Y, Yin ZP, Zhang QF. Physicochemical properties of dihydromyricetin and the effects of ascorbic acid on its stability and bioavailability. Journal of the Science of Food and Agriculture. 2020;101(9):3862–3869.
 
8.
Maieves HA, López-Froilán R, Morales P, Pérez-Rodríguez ML, Ribani RH, Cámara M, et al. Antioxidant phytochemicals of Hovenia dulcis Thunb. peduncles in different maturity stages. Journal of Functional Foods. 2015;18:1117–1124. doi:10.1016/j.jff.2015.01.044.
 
9.
Mi JH, Nim HL, Jin HJ. Hovenia dulcis Thunb. and its active compound ampelopsin inhibit angiogenesis through suppression of VEGFR2 signaling and HIF-1α expression. Oncol Rep. 2017;38(6):3430–3438.
 
10.
Sferrazza G, Brusotti G, Zonfrillo M, Temporini C, Tengattini S, Bononi M, et al. Hovenia dulcis Thumberg: Phytochemistry, Pharmacology, Toxicology and Regulatory Framework for Its Use in the European Union. Molecules. 2021;26(4):903–903. doi:10.3390/molecules26040903.
 
11.
Liang X, Wu YP, Qiu JH, Zhong K, Gao H. A Potent Antibrowning Agent from Pine Needles of Cedrus deodara: 2R,3R-Dihydromyricetin. Journal of Food Science. 2014;79(9):1643–1648. doi:10.1111/1750-3841.12583.
 
12.
Liu H, Zhao W, Hu Q, Zhao L, Wei Y, Pi C, et al. Gastric floating sustained-release tablet for dihydromyricetin: Development, characterization, and pharmacokinetics study. Saudi Pharmaceutical Journal. 2019;27(7):1000–1008. doi:10.1016/j.jsps.2019.08.002.
 
13.
Hu H, Luo F, Wang M, Fu Z, Shu X. New Method for Extracting and Purifying Dihydromyricetin from Ampelopsis grossedentata. ACS Omega. 2020;5(23):13955–13962. doi:10.1021/acsomega.0c01222.
 
14.
Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, et al. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Frontiers in Pharmacology. 2018;9:1–11. doi:10.3389/fphar.2018.01204.
 
15.
Park JN, Kim JH. Kinetic and thermodynamic characteristics of fractional precipitation of (+)- dihydromyricetin. Process Biochemistry. 2017;53:224–231. doi:10.1016/j.procbio.2016.11.014.
 
16.
Wang C, Xiong W, Perumalla SR, Fang J, Sun CC. Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves. International Journal of Pharmaceutics. 2016;511(1):245–252.
 
17.
Umair M, Jabbar S, Sultana T, Ayub Z, Abdelgader SA, Xiaoyu Z, et al. Chirality of the biomolecules enhanced its stereospecific action of dihydromyricetin enantiomers. Food Science and Nutrition. 2020;8(9):4843–4856.
 
18.
Tong Q, Hou X, Fang J, Wang W, Xiong W, Liu X, et al. Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis. 2015;114:455–461. doi:10.1016/j.jpba.2015.06.030.
 
19.
Chen, Liang, Shi M, Lv C, Song Y, Wu Y, et al. Dihydromyricetin Acts as a Potential Redox Balance Mediator in Cancer Chemoprevention. Mediators of Inflammation. 2021;2021:1–18. doi:10.1155/2021/6692579.
 
20.
Zhang P, Cai S, Song L, Zhang L, Fan H, Zhou L, et al. Solubility of dihydromyricetin in ethanol and water mixtures from 288.15 to 323.15K. Journal of Molecular Liquids. 2015;211:197–202. doi:10.1016/j.molliq.2015.07.007.
 
21.
Chen Y, Luo HQ, Sun LL, Xu MT, Yu J, Liu LL, et al. Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement. International Journal of Molecular Sciences. 2018;19(9). doi:10.3390/ijms19092592.
 
22.
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, et al. Dietary polyphenols for managing cancers: What have we ignored? Trends in Food Science and Technology. 2020;101:150–164.
 
23.
Xie K, He X, Chen K, Chen J, Sakao K, Hou DX. Antioxidant Properties of a Traditional Vine Tea. Ampelopsis grossedentata Antioxidants. 2019;8(8). doi:10.3390/antiox8080295.
 
24.
Zheng Q, Fan J. Effect of Dihydromyricetin on the Stability of Polypropylene in Natural Weathering Tests. Journal of Macromolecular Science, Part B. 2016;55(4):426–431. doi:10.1080/00222348.2016.1153404.
 
25.
Wang C, Tong Q, Hou X, Hu S, Fang J, Sun CC. Enhancing Bioavailability of Dihydromyricetin through Inhibiting Precipitation of Soluble Cocrystals by a Crystallization Inhibitor. Crystal Growth and Design. 2016;16(9):5030–5039.
 
26.
Xiang D, Wang CG, Wang WQ, Shi CY, Xiong W, Wang MD, et al. Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: an in vitro investigation. International Journal of Food Sciences and Nutrition. 2017;68(6):704–711. doi:10.1080/09637486.2016.1276518.
 
27.
Maini S, Hodgson HL, Krol ES. The UVA and Aqueous Stability of Flavonoids Is Dependent on B-Ring Substitution. Journal of Agricultural and Food Chemistry. 2012;60(28):6966–6976. doi:10.1021/jf3016128.
 
28.
Wang L, Qin Y, Wang Y, Zhou Y, Liu B. Interaction between iron and dihydromyricetin extracted from vine tea. Food Science & Nutrition. 2020;8(11):5926–5933.
 
29.
Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, et al. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2020;243:118731–118731. doi:10.1016/j.saa.2020.118731.
 
30.
Chen T, Zhu S, Shang Y, Ge C, Jiang G. Binding of dihydromyricetin to human hemoglobin: Fluorescence and circular dichroism studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;93:125–130. doi:10.1016/j.saa.2012.02.109.
 
31.
Yu X, Liu R, Yang F, Ji D, Li X, Chen J, et al. Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. Journal of Molecular Structure. 2011;985(2-3):407–412. doi:10.1016/j.molstruc.2010.11.034.
 
32.
Xiao J. Stability of dietary polyphenols: It’s never too late to mend? Food and Chemical Toxicology. 2018;119:3–5. doi:10.1016/j.fct.2018.03.051.
 
33.
Xiao JB, Högger P. Stability of dietary polyphenols under the cell culture conditions: Avoiding erroneous conclusions. Journal of Agricultural and Food Chemistry. 2015;63(5):1547– 1557. doi:10.1021/jf505514d.
 
34.
Cao H, Högger P, Arroo R, Xiao J. Flavonols with a catechol or pyrogallol substitution pattern on ring B readily form stable dimers in phosphate buffered saline at four degrees celsius. Food Chemistry. 2020;311:125902–125902.
 
35.
He GX, Pei G, Yang WL, Li B. Determination of dihydromyricetin in different parts of Ampelopsis grossedentata in different seasons by HPLC. Chinese Traditional Patent Medicine. 1992;(03):0–0.
 
36.
Yu QP, He LL, Wang JS, Zhang N, Kong Q, Yu ZW. Dynamics Changes of Functional Ingredients from Cultivated Ampelopsis grossedentata. Chinese Journal of Experimental Traditional Medical Formulae. 2014;p. 9–9.
 
37.
Ke Z, Zhu H, S, Zou Z, F D. Study on Extraction and Separation of Dihydromyricetin from Vine Tea [Ampelopsis grossedentata (Hand-Mazz) WT wang. Agricultural Biotechnology. 2020;9(1):2164–4993.
 
38.
Yao Y, Zhang M, He L, Wang Y, Chen S. Evaluation of General Synthesis Procedures for Bioflavonoid-Metal Complexes in Air- Saturated Alkaline Solutions. Frontiers in Chemistry. 2020;8:1–11.
 
39.
Muhammad U, Lu H, Wang J, Han J, Zhu X, Lu Z, et al. Optimizing the maximum recovery of dihydromyricetin from Chinese vine tea, ampelopsis grossedentata, using response surface methodology. Molecules. 2017;(12):22–22. doi:10.3390/molecules22122250.
 
40.
Yanni L, Xiaobin Z, Duowei L. Optimization of Dihydromyricetin ultrasonic extraction technology from Ampelopsis grossedentata leaves. Guizhou Agricultural Sciences. 2018;46(5):123–126.
 
41.
Li W, Chen Y, Xu X, Zheng C, Zhao J. Optimization of dynamic microwave-assisted extraction of dihydromyricetin from Ampelopsis grossedentata using response surface methodology. Journal of the Chemical Society of Pakistan. 2018;40(6):1028– 1034.
 
42.
Wang L, Zhou Y, Wang Y, Qin Y, Liu B, Bai M. Two green approaches for extraction of dihydromyricetin from Chinese vine tea using β-Cyclodextrin-based and ionic liquid-based ultrasonic-assisted extraction methods. . Food and Bioproducts Processing. 2019;116:1–9. Available from: https://doi.org/10. 1016/j.fbp.2019.04.005. doi:10.1016/j.fbp.2019.04.005.
 
43.
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocolloids. 2009;23(7):1631–1640. doi:10.1016/j.foodhyd.2009.01.001.
 
44.
Liu B, Ma Y, Yuan C, Su C, Hu L, Wang J. Characterization, stability and antioxidant activity of the inclusion complex of dihydromyricetin with hydroxypropyl-β-cyclodextrin. Journal of Food Biochemistry. 2012;36(5):634–641. doi:10.1111/j.1745- 4514.2011.00577.x.
 
45.
Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu Y, et al. SIRT3 Activation by Dihydromyricetin Suppresses Chondrocytes Degeneration via Maintaining Mitochondrial Homeostasis. International Journal of Biological Sciences. 2018;14(13):1873– 1882. doi:10.7150/ijbs.27746.
 
46.
Samsonowicz M, Regulska E, Kalinowska M. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chemico-Biological Interactions. 2017;273:245–256. doi:10.1016/j.cbi.2017.06.016.
 
47.
Wu C, Zheng XP, Chen LL. Study on Antioxidant Activity of Dihydromyricetin-Zinc(II) Complex. Advanced Materials Research. 2011;183:863–867. doi:10.4028/www.scientific.net/AMR.183-185.863.
 
48.
Du Q, Cai W, Xia M, Ito Y. Purification of (+)-dihydromyricetin from leaves extract of Ampelopsis grossedentata using high- speed countercurrent chromatograph with scale-up triple columns. Journal of Chromatography A. 2002;973(1-2):217– 220. doi:10.1016/S0021-9673(02)01092-0.
 
49.
Ameen F, Alyahya SA, Bakhrebah MA, Nassar MS, Aljuraifani A. Flavonoid dihydromyricetin-mediated silver nanoparticles as potential nanomedicine for biomedical treatment of infections caused by opportunistic fungal pathogens. Research on Chemical Intermediates. 2018;44(9):5063–5073. doi:10.1007/s11164-018- 3409-x.
 
50.
Lin Y, Fan J, Ruan L, Bi J, Yan Y, Wang T, et al. Semi-preparative separation of dihydromyricetin enantiomers by supercritical fluid chromatography and determination of anti-inflammatory activities. Journal of Chromatography A. 1606;p. 460386– 460386. doi:10.1016/j.chroma.2019.460386.
 
51.
Li X, Cao M, Ma W, Jia C, Li J, Zhang M, et al. Annotation of genes involved in high level of dihydromyricetin production in vine tea (Ampelopsis grossedentata) by transcriptome analysis. BMC Plant Biology. 2020;20(1):1–12.
 
52.
Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Applied Microbiology and Biotechnology. 2018;102(4):1575–1585. doi:10.1007/s00253- 018-8747-5.
 
53.
Li H, Li Q, Liu Z, Yang K, Chen Z, Cheng Q, et al. The Versatile Effects of Dihydromyricetin in Health. 2017;doi:10.1155/2017/1053617.
 
54.
Li G, Li H, Lyu Y, Zeng W, Zhou J. Enhanced Biosynthesis of Dihydromyricetin in Saccharomyces cerevisiae by Coexpression of Multiple Hydroxylases. Journal of Agricultural and Food Chemistry. 2020;68(48):14221–14229.
 
55.
Xiang D, Fan L, Hou X, Long, Xiong W, Shi C, et al. Uptake and Transport Mechanism of Dihydromyricetin Across Human Intestinal Caco-2 Cells. Journal of Food Science. 2018;83(7):1941–1947. doi:10.1111/1750-3841.14112.
 
56.
Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundamental & Clinical Pharmacology. 1999;13(2):154–168. doi:10.1111/j.1472- 8206.1999.tb00334.x.
 
57.
Li M, Dyett B, Zhang X. Automated Femtoliter Droplet-Based Determination of Oil-Water Partition Coefficient. Analytical Chemistry. 2019;(16):10371–10375. doi:10.1021/acs.analchem.9b02586.
 
58.
Yu Z, Chen Z, Li Q, Yang K, Huang Z, Wang W, et al. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: a review focusing on absorption and metabolism. Drug Metabolism Reviews. 2020;0(0):1–19.
 
59.
Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology. 1989;96(2):80072–80073. doi:10.1016/S0016-5085(89)80072-1.
 
60.
Liu L, Zhou M, Lang H, Zhou Y, Mi M. Dihydromyricetin enhances glucose uptake by inhibition of MEK/ERK pathway and consequent down-regulation of phosphorylation of PPARγ in 3T3-L1 cells. Journal of Cellular and Molecular Medicine. 2018;22(2):1247–1256. doi:10.1111/jcmm.13403.
 
61.
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews. 2012;64:138–153. doi:10.1016/j.addr.2012.09.027.
 
62.
Naeem A, Ming Y, Pengyi H, Jie KY, Yali L, Haiyan Z, et al. The fate of flavonoids after oral administration: a comprehensive overview of its bioavailability. Critical Reviews in Food Science and Nutrition. 2021;0(0):1–18. doi:10.1080/10408398.2021.1898333.
 
63.
Huang Y, Zhao J, Jian W, Wang G. Effects of verapamil on the pharmacokinetics of dihydromyricetin in rats and its potential mechanism. Xenobiotica. 2018;48(8):839–844. doi:10.1080/00498254.2017.1366576.
 
64.
Zhang Y, Que S, Yang X, Wang B, Qiao L, Zhao Y. Isolation and identification of metabolites from dihydromyricetin. Magnetic Resonance in Chemistry. 2007;45(11):909–916. doi:10.1002/mrc.2051.
 
65.
Liu L, Yin X, Wang X, Li X. Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Pharmaceutical Biology. 2017;55(1):657–662. doi:10.1080/13880209.2016.1266669.
 
66.
Fan L, Tong Q, Dong W, Yang G, Hou X, Xiong W, et al. Tissue Distribution, Excretion, and Metabolic Profile of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) after Oral Administration in Rats. Journal of Agricultural and Food Chemistry. 2017;65(23):4597–4604. doi:10.1021/acs.jafc.7b01155.
 
67.
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers. 2020;1(2):109–133.
 
68.
Fan L, Zhao X, Tong Q, Zhou X, Chen J, Xiong W, et al. Interactions of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) with Gut Microbiota. Journal of Food Science. 2018;83(5):1444–1453. doi:10.1111/1750- 3841.14128.
 
69.
Liu H, Gan C, Shi H, Qu K, Jing L, Lu M, et al. Gastric floating pill enhances the bioavailability and drug efficacy of dihydromyricetin in vivo. Journal of Drug Delivery Science and Technology. 2021;61:102279–102279. doi:10.1016/j.jddst.2020.102279.
 
70.
Chen T, Zhu S, Lu Y, Cao H, Zhao Y, Jiang G, et al. Probing the Interaction of Anti-Cancer Agent Dihydromyricetin with Human Serum Albumin: A typical Method Study. In Anti- Cancer Agents in Medicinal Chemistry. 2012;12(8):919–928.
 
71.
Ye J, Bao S, Zhao S, Zhu Y, Ren Q, Li R, et al. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech. 2021;22(3):111–111. doi:10.1208/s12249-021-01983-2.
 
72.
Sun CC, Su H, Zheng GD, Wang WJ, Yuan E, Zhang QF. Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat. Food Chemistry. 2020;330:127245–127245.
 
73.
Cao SL, Deng X, Xu P, Huang ZX, Zhou J, Li XH, et al. Highly Efficient Enzymatic Acylation of Dihydromyricetin by the Immobilized Lipase with Deep Eutectic Solvents as Cosolvent. Journal of Agricultural and Food Chemistry. 2017;65(10):2084– 2088. doi:10.1021/acs.jafc.7b00011.
 
74.
Phang-Lyn S, Llerena VA. 2020.
 
75.
Li, Houkai, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opinion on Drug Metabolism & Toxicology. 2016;12(1):31–40. doi:10.1517/17425255.2016.1121234.
 
76.
Meyer UA. Overview of enzymes of drug metabolism. Journal of Pharmacokinetics and Biopharmaceutics. 1996;24(5):449–459. doi:10.1007/BF02353473.
 
77.
Ge H, Guan S, Shen Y, Sun M, Hao Y, He L, et al. Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Scientific Reports. 2019;9(1):14619–14619. doi:10.1038/s41598- 019-51124-w.
 
78.
Guan S, Shen Y, Ge H, Xiong W, He L, Liu L, et al. Dihydromyricetin Alleviates Diabetic Neuropathic Pain and Depression Comorbidity Symptoms by Inhibiting P2X7 Receptor. Frontiers in Psychiatry. 2019;10. doi:10.3389/fpsyt.2019.00770.
 
79.
Sun P, Yin JB, Liu LH, Guo J, Wang SH, Qu CH, et al. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Bioscience Reports. 2019;(1):39–39. doi:10.1042/BSR20180902.
 
80.
Liu M, Guo H, Li Z, Zhang C, Zhang X, Cui Q, et al. Molecular Level Insight Into the Benefit of Myricetin and Dihydromyricetin Uptake in Patients With Alzheimer’s Diseases. In Frontiers in Aging Neuroscience. 2020;12:601303–601303.
 
81.
Jia L, Wang Y, Sang J, Cui W, Zhao W, Wei W, et al. Dihydromyricetin Inhibits α-Synuclein Aggregation, Disrupts Preformed Fibrils, and Protects Neuronal Cells in Culture against Amyloid-Induced Cytotoxicity. Journal of Agricultural and Food Chemistry. 2019;67(14):3946–3955. doi:10.1021/acs.jafc.9b00922.
 
82.
Qian J, Wang X, Cao J, Zhang W, Lu C, Chen X. Dihydromyricetin attenuates D-galactose-induced brain aging of mice via inhibiting oxidative stress and neuroinflammation. Neuroscience Letters. 2021;756:135963–135963. doi:10.1016/j.neulet.2021.135963.
 
83.
Liu CM, Yang W, Ma JQ, Yang HX, Feng ZJ, Sun JM, et al. Dihydromyricetin Inhibits Lead-Induced Cognitive Impairments and Inflammation by the Adenosine 5′- Monophosphate-Activated Protein Kinase Pathway in Mice. Journal of Agricultural and Food Chemistry. 2018;66(30):7975– 7982.
 
84.
Fan KJ, Yang B, Liu Y, Tian XD, Wang B. Inhibition of human lung cancer proliferation through targeting stromal fibroblasts by dihydromyricetin. Mol Med Rep. 2017;16(6):9758–9762. doi:10.3892/mmr.2017.7802.
 
85.
Zuo Y, Lu Y, Xu Q, Sun D, Liang X, Li X, et al. Inhibitory effect of dihydromyricetin on the proliferation of JAR cells and its mechanism of action. Oncol Lett. 2020;20(1):357–363. doi:10.3892/ol.2020.11546.
 
86.
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. International Immunopharmacology. 2019;67:220– 230. doi:10.1016/j.intimp.2018.12.025.
 
87.
Chen L, Yang, Zhou ZS, Deng YZ, Jiang Y, Tan P, et al. Dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis via regulating miR-21 in Human Cholangiocarcinoma Cells. Journal of Cancer. 2020;11(19):5689–5699.
 
88.
Jiang L, Ye WC, Li Z, Yang Y, Dai W, Li M. Anticancer effects of dihydromyricetin on the proliferation, migration, apoptosis and in vivo tumorigenicity of human hepatocellular carcinoma Hep3B cells. BMC Complementary Medicine and Therapies. 2021;21(1):194–194. doi:10.1186/s12906-021-03356-5.
 
89.
Zhang Z, Zhang H, Chen S, Xu Y, Yao A, Liao Q, et al. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutrition Research. 2017;38:27–33. doi:10.1016/j.nutres.2017.01.003.
 
90.
Tan M, Jiang B, Wang H, Ouyang W, Chen X, Wang T, et al. Dihydromyricetin induced lncRNA MALAT1- TFEB-dependent autophagic cell death in cutaneous squamous cell carcinoma. Journal of Cancer. 2019;10(18):4245–4255. doi:10.7150/jca.32807.
 
91.
Wei L, Sun X, Qi X, Zhang Y, Li Y, Xu Y. Dihydromyricetin Ameliorates Cardiac Ischemia/Reperfusion Injury through Sirt3 Activation. BioMed Research International. 2019;6803943. doi:10.1155/2019/6803943.
 
92.
Song Q, Liu L, Yu J, Zhang J, Xu M, Sun L, et al. Dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress. European Journal of Pharmacology. 2017;807:159–167. doi:10.1016/j.ejphar.2017.04.014.
 
93.
Luo Y, Lu S, Dong X, Xu L, Sun G, Sun X. Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway. Apoptosis. 2017;22(8):1013–1024. doi:10.1007/s10495-017-1381-3.
 
94.
Zhang X, Wang L, Peng L, Tian X, Qiu X, Cao H, et al. Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway. Journal of Cellular and Molecular Medicine. 2019;23(7):4829–4838. doi:10.1111/jcmm.14406.
 
95.
Li Q, Wang J, Zhu X, Zeng Z, Wu X, Xu Y, et al. Dihydromyricetin prevents monocrotaline-induced pulmonary arterial hypertension in rats. Biomedicine & Pharmacotherapy. 2017;96:825–833. doi:10.1016/j.biopha.2017.10.007.
 
96.
Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, et al. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochemical Pharmacology. 2020;175:113888. doi:10.1016/j.bcp.2020.113888.
 
97.
Dong S, Ji J, Hu L, Wang H. Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration. Life Sciences. 2019;227:20–29. doi:10.1016/j.lfs.2019.04.019.
 
98.
Yan Y, Wang K, Tang X, Gao J, Wen B. Phytochemicals protect L02 cells against hepatotoxicity induced by emodin via the Nrf2 signaling pathway. Toxicology Research. 2019;8(6):1028–1034. doi:10.1039/c9tx00220k.
 
99.
Carry E, Kshatriya D, Silva J, Davies DL, Yuan B, Wu Q, et al. Identification of Dihydromyricetin and Metabolites in Serum and Brain Associated with Acute Anti-Ethanol Intoxicating Effects in Mice. International Journal of Molecular Sciences. 2021;(14):22–22. doi:10.3390/ijms22147460.
 
100.
Chang Y, Yuan L, Liu J, Muhammad I, Cao C, Shi C, et al. Dihydromyricetin attenuates Escherichia coli lipopolysaccharide-induced ileum injury in chickens by inhibiting NLRP3 inflammasome and TLR4/NF-κB signalling pathway. Veterinary Research. 2020;51(1). doi:10.1186/s13567- 020-00796-8.
 
101.
Long H, Xin Z, Zhang F, Zhai Z, Ni X, Chen J, et al. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on deoxynivalenol treated IPEC-J2 cells. Food Chemistry. 2021;338. doi:10.1016/j.foodchem.2020.128116.
 
102.
on Nutrition EP, Turck D, Castenmiller J, Henauw SD, Hirsch- Ernst KI, Kearney J, et al. Safety of hot water extract of fruits and peduncles of Hovenia dulcis as a novel food pursuant to Regulation 1(EU) 2015/2283. EFSA Journal. 2020;18(8):e06196. doi:10.2903/j.efsa.2020.6196.
 
103.
Ren Z, Yan P, Zhu L, Yang H, Zhao Y, Kirby BP, et al. Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology. 2018;235(1):233–244. doi:10.1007/s00213-017-4761-z.
 
104.
Guo C, Cao T, Zheng L, Waddington JL, Zhen X. Development and characterization of an inducible Dicer conditional knockout mouse model of Parkinson’s disease: validation of the antiparkinsonian effects of a sigma-1 receptor agonist and dihydromyricetin. Acta Pharmacologica Sinica. 2020;41(4):499– 507.
 
105.
Kalluri R. The biology and function of fibroblasts in cancer. Nature Reviews Cancer. 2016;16(9):582–598. doi:10.1038/nrc.2016.73.
 
106.
Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nature Reviews Immunology. 2021;p. 1–14. doi:10.1038/s41577-021-00540-z.
 
107.
Zhu XH, Lang HD, Wang XL, Hui SC, Zhou M, Kang C, et al. Synergy between dihydromyricetin intervention and irinotecan chemotherapy delays the progression of colon cancer in mouse models. Food & Function. 2019;10(4):2040–2049. doi:10.1039/C8FO01756E.
 
108.
Sun Y, Wang C, Meng Q, Liu Z, Huo X, Sun P, et al. Targeting P-glycoprotein and SORCIN: Dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca2+-mediated apoptosis pathways in MCF-7/ADR and K562/ADR. Journal of Cellular Physiology. 2018;233(4):3066– 3079. doi:10.1002/jcp.26087.
 
109.
Xu B, Huang S, Wang C, Zhang H, Fang S, Zhang Y. Anti-inflammatory effects of dihydromyricetin in a mouse model of asthma. Mol Med Rep. 2017;15(6):3674–3680. doi:10.3892/mmr.2017.6428.
 
110.
Gao J, Shi N, Guo H, Gao J, Tang X, Yuan S, et al. UPLC-Q-TOF/MS-Based Metabolomics Approach to Reveal the Hepatotoxicity of Emodin and Detoxification of Dihydromyricetin. ACS Omega. 2021;6(8):5348–5358. doi:10.1021/acsomega.0c05488.
 
111.
Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, et al. Dihydromyricetin As a Novel Anti- Alcohol Intoxication Medication. The Journal of Neuroscience. 2012;32(1):390–401. doi:10.1523/JNEUROSCI.4639-11.2012.
 
112.
Han H, Dong Y, Ma X. Dihydromyricetin Protects Against Gentamicin-Induced Ototoxicity via PGC-1α/SIRT3 Signaling in vitro. Frontiers in Cell and Developmental Biology. 2020;8:702–702.
 
113.
Chu J, Wang X, Bi H, Li L, Ren M, Wang J. Dihydromyricetin relieves rheumatoid arthritis symptoms and suppresses expression of pro-inflammatory cytokines via the activation of Nrf2 pathway in rheumatoid arthritis model. International Immunopharmacology. 2018;59:174–180. doi:10.1016/j.intimp.2018.04.001.
 
114.
Jia R, Ma J, Meng W, Wang N. Dihydromyricetin inhibits caerulin-induced TRAF3-p38 signaling activation and acute pancreatitis response. Biochemical and Biophysical Research Communications. 2018;503(3):1696–1702. doi:10.1016/j.bbrc.2018.07.101.
 
115.
Wang HL, Xing GD, Qian Y, Sun XF, Zhong JF, Chen KL. Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction. Ecotoxicology and Environmental Safety. 2021;214. doi:10.1016/j.ecoenv.2021.112078.
 
116.
Zhou DZ, Sun HY, Yue JQ, Peng Y, Chen YM, Zhong ZJ. Dihydromyricetin induces apoptosis and cytoprotective autophagy through ROS-NF-κB signalling in human melanoma cells. Free Radical Research. 2017;51(5):517–528. doi:10.1080/10715762.2017.1328552.
 
117.
Ye X, Pang Z, Zhu N. Dihydromyricetin attenuates hypertrophic scar formation by targeting activin receptor-like kinase 5. European Journal of Pharmacology. 2019;852:58–67. doi:10.1016/j.ejphar.2019.02.039.
 
118.
Tian Y, Sang H, Liu M, Chen F, Huang Y, Li L, et al. Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation. Microbes and Infection. 2020;22(6):254–262.
 
119.
Huang W, Xie J. Antibacterial Effect of Dihydromyricetin on Specific Spoilage Organisms of Hybrid Grouper. Journal of Food Quality. 2021;2021:5569298. doi:10.1155/2021/5569298.
 
120.
Wu YP, Bai JR, Grosu E, Zhong K, Liu LJ, Tang MM, et al. Inhibitory Effect of 2R,3R-Dihydromyricetin on Biofilm Formation by Staphylococcus aureus. Foodborne Pathogens and Disease. 2018;15(8):475–480. doi:10.1089/fpd.2017.2405.
 
121.
Sun B, Tan D, Pan D, Baker MR, Liang Z, Wang Z, et al. Dihydromyricetin Imbues Antiadipogenic Effects on 3T3-L1 Cells via Direct Interactions with 78-kDa Glucose-Regulated Protein. The Journal of Nutrition. 2021;151(7):1717–1725. doi:10.1093/jn/nxab057.
 
122.
Yao M, Teng H, Lv Q, Gao H, Guo T, Lin Y, et al. Anti- hyperglycemic effects of dihydromyricetin in streptozotocin- induced diabetic rats. Food Science and Human Wellness. 2021;10:155–162. doi:10.1016/j.fshw.2021.02.004.
 
123.
Chen, Shihui, Zhao X, Wan J, Ran L, Qin Y, et al. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: A randomized controlled trial. Pharmacological Research. 2015;99:74–81. doi:10.1016/j.phrs.2015.05.009.
 
124.
Fan X, Zeng Y, Fan Z, Cui L, Song W, Wu Q, et al. Dihydromyricetin promotes longevity and activates the transcription factors FOXO and AOP in Drosophila. Aging. 2020;13(1):460–476. doi:10.18632/aging.202156.
 
125.
Zhou Y, Hu Y, Zang B, Qiu F, Liu X, Nie Y, et al. Toxicological assessment on Ampelopsis grossedentata and its immune regulation study. Practical Preventive Medicine. 2001;8(6):412– 414.
 
126.
Su DL, Huang JH, Yao MJ. The acute toxicological evaluation of dihydromyricetin and its control effect for alcoholic hepatic injury. Hun Agricultural Sci. 2009;p. 90–93.
 
127.
Zhong Z, Zhou G, Chen X. The rat chronic toxicity test of total flavone of Ampelopsis grossedentata from Guangxi. Lishizhen Medicine & Materia Medical Research. 2003;14(4):193–195.
 
128.
Silva FAP, Estévez M, Ferreira VCS, Silva SA, Lemos LTM, Ida EI, et al. Protein and lipid oxidations in jerky chicken and consequences on sensory quality. LWT. 2018;97:341–348. doi:10.1016/j.lwt.2018.07.022.
 
129.
Zhang X, Xu Y, Xue H, Jiang GC, Liu XJ. Antioxidant activity of vine tea (Ampelopsis grossedentata) extract on lipid and protein oxidation in cooked mixed pork patties during refrigerated storage. Food Science & Nutrition. 2019;7(5):1735– 1745. doi:10.1002/fsn3.1013.
 
130.
Jia C, Zhang M, Ma W, Li J, Zhao S, Xiong S, et al. Evaluation of antioxidant properties of the different tissues of vine tea (Ampelopsis grossedentata) in stripped canola oil and sunflower oil. Journal of Food Science. 2020;85(4):1082–1089.
 
131.
Moon KM, Kwon EB, Lee B, Kim CY. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules. 2020;25(12):2754–2754. doi:10.3390/molecules25122754.
 
132.
Tinello F, Lante A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies. 2018;50:73–83. doi:10.1016/j.ifset.2018.10.008.
 
133.
Díaz-Montes E, Castro-Muñoz R. Edible films and coatings as food-quality preservers: An overview. Foods. 2021;10(2):249– 249. doi:10.3390/foods10020249.
 
134.
Rodríguez GM, Sibaja JC, Espitia PJP, Otoni CG. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocolloids. 2020;103:105630–105630.
 
135.
Xie W, Du Y, Yuan S, Pang J. Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum. International Journal of Biological Macromolecules. 2021;180:385–391. doi:10.1016/j.ijbiomac.2021.02.185.
 
136.
Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, et al. Dihydromyricetin- Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin-Based Edible Films. Food and Bioprocess Technology. 2021;Available from: https://doi.org/10.1007/s11947.... doi:10.1007/s11947-021-02664-5.
 
137.
Koszucka A, Nowak A. Thermal processing food- related toxicants: a review. Critical Reviews in Food Science and Nutrition. 2019;59(22):3579–3596. doi:10.1080/10408398.2018.1500440.
 
138.
Zhou B, Zhao Y, Wang X, Fan D, Cheng K, Wang M. Unraveling the inhibitory effect of dihydromyricetin on heterocyclic aromatic amines formation. Journal of the Science of Food and Agriculture. 2018;98(5):1988–1994. doi:10.1002/jsfa.8682.
 
139.
Teng J, Liu X, Hu X, Zhao Y, Tao NP, Wang M. Dihydromyricetin as a Functional Additive to Enhance Antioxidant Capacity and Inhibit the Formation of Thermally Induced Food Toxicants in a Cookie Model. Molecules. 2018;23(9):23. doi:10.3390/molecules23092184.
 
140.
Ma Q, Cai S, Jia Y, Sun X, Yi J, Du J. Effects of Hot- Water Extract from Vine Tea (Ampelopsis grossedentata) on Acrylamide Formation. Quality and Consumer Acceptability of Bread Foods. 2020;9(3):373–373.
 
141.
Geng S, Liu X, Ma H, Liu B, Liang G. Multi-scale stabilization mechanism of pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles. Food Chemistry. 2021;355:129660–129660. doi:10.1016/j.foodchem.2021.129660.
 
142.
Sarkar A, Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid & Interface Science. 2020;49:69–81.
 
eISSN:2666-3066
Journals System - logo
Scroll to top