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A B S T R A C T

To achieve potential alternatives for hyperuricemia therapeutics, a novel structure-docking energy relationship model was
established for high-throughput screening inhibitors of xanthine oxidase (XO). Molecular docking was performed between XO
and 311 natural compounds from 6 traditional Chinese herbs. Then, structure-docking energy relationship model was simulated
between molecular docking energy and 63 molecular descriptors by multiple linear regressions (MLR), principal component
regression (PCR), and artificial neural network (ANN), respectively.The results showed that theANNmodel was the bestmodel to
predict the docking energy of XO with the coefficient of determination (R2) and mean squared error (MSE) at 0.8746 and 0.9414,
respectively. The data of XO inhibitory activity were consistent with the prediction in vitro, which was also further confirmed
by hyperuricemia cell model. The results suggested that the structure-docking energy relationship model provides a paradigm
framework for the screening of XO inhibitors.

© 2021 The Authors. Publishing services by Visagaa Publishing House
This is an open access article distributed under theCCBY-NC4.0 license (https://creativecommons.org/licenses/by/4.0/).

1. INTRODUCTION

Hyperuricemia is a metabolic disease characterized by high serum
(or plasma) uric acid levels and is considered an important
risk factor for gout [1]. In humans, uric acid is the end
product of endogenous and dietary purines [2]. The associated
metabolic pathway consists of multiple steps of reactions catalyzed
by various enzymes, including adenosine deaminase, purine
nucleoside phosphorylase and xanthine oxidase (XO) [3]. Among
these, XO catalyzes the conversion of hypoxanthine to xanthine and
then xanthine to uric acid [4, 5].

To date, studies have mainly focused on the inhibition of XO in
lowering uric acid and XO inhibitors are the mainstay of therapy
for reducing serum urate levels in patients with hyperuricemia
or gout [6]. However, XO-inhibiting antihyperuricemic drugs
result in renal impairment and hypersensitivity reactions, which
could be fatal in some cases [7, 8]. Therefore, great diversity
and novel chemical structure derived from natural products can
be used as potential candidates. Most importantly, the screening
of phytochemicals for inhibitors with fewer adverse effects and
multi-targets has become the main direction of drug research and
development.

Molecular docking is an intelligent calculation method based
on the principle of geometric complementarity and energy
complementation to evaluate the interaction of small molecule

ligands and protein receptors [9]. It is done by setting multiple
structural description parameters, simulating the binding sites
of specific enzymes and compounds and the results are ranked,
which is of great significance in enzyme research and drug design.
Simultaneously, molecular docking can also speculate on the
mechanism of binding sites, making it useful to screen functional
compounds [10–12]. However, analyzing the results of stochastic
search methods can sometimes be unclear. Additionally, in silico
approaches are used to analyze the chemical structure of fictive
molecules and compounds to establish a quantitative structure-
activity relationship (QSAR) model, which can be used for high-
throughput screening of active molecules [13]. QSAR model and
molecular docking methods have been widely used in recent
study of drug discovery and development due to their prominent
advantages such as timesaving, cost-reduction, high efficiency
in in silico screening and prediction of candidate drugs [14].
However, the structure-activity relationship model should be based
on molecules with known chemical activity and cannot be applied
to molecules with unknown chemical activity. Therefore, for
molecules with unknown chemical activity, a suitable model for
high-throughput prediction and screening is urgently needed.

In this paper, the interactions between XO and 311 compounds
from six traditional Chinese herbal drugs were explored by
molecular docking. The molecular descriptors of small molecules
were evaluated by PaDEL-Descriptor (a Java software that
can calculate molecular descriptors and fingerprints), and the
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representative molecular descriptors were screened. Multiple
linear regressions (MLR), Principal component regression (PCR),
and artificial neural network (ANN) were used to establish the
structure-docking energy relationship model of XO. Then, XO
inhibitory activity of herbal extracts was used to verify the predicted
results. The binding activity of the functional compounds with XO
be calculated and predicted directly by building the relationship
model for each compound. Moreover, the model also provided
some novel insight on the mechanism by which structures exert
inhibitory activity, thereby offering guidance for high throughput
screening and molecular design of uric acid lowering drugs.

2. MATERIALS AND METHODS

2.1. Dataset

To screen those compounds with unspecified antagonistic activity,
a data set of 311 purine metabolic enzymes (XO) - inhibitor
compounds were collected from Chinese pharmacopoeia and used
for molecular docking and structure-docking energy relationship
model in this study. These 311 compounds were from Apium
graveolens L. (57), Puerariae Lobatae Radix (64), Taraxacum
mongolicum Hand. -Mazz. (63), Cynara scolymus (31), Cirsium
japonicum Fisch. ex DC. (39), and Periploca forrestii Schltr. (57)
(Supplementary material). The molecular structures were built
using ChemDraw Professional 15.1 and optimized using MM1
force field by Chem3D 15.1. The molecular docking-energy of
these compounds was used as a dependent variable for further
investigation. The whole data set was randomly divided into a
training set of 233 compounds (75%) and a test set of 78 compounds
(25%). The training set was used to construct structure-docking
energy relationship models, and the test set was used as extra
independent samples for the validation of the established models.
The R language (Version 3.4.1) was used to analyze the data.

2.2. Materials

Human kidney cells (HK-2 cells) were acquired from Wuxi Puhe
Biomedical Company (Wuxi, China). Analytical-grade xanthine,
4-aminoantipyrine, adenosine, inosine, hypoxanthine, uric acid,
and adenine, were purchased from Aladdin Reagent Int. (Shanghai,
China). Phosphate-buffered saline (PBS), 3 - [4, 5-Dimethylthiazol-
2-yl]-2, 5-diphenyltetrazolium bromide (MTT), horseradish
peroxidase and XO were purchased from Sigma-Aldrich. RMPI
1640, fetal bovine serum (FBS), penicillin, and streptomycin were
bought from Gibco Life Technologies (Grand Island, NY).

2.3. Protease receptor selection and
molecular docking studies

Molecular docking was carried out using XO as receptors XO. The
three-dimensional crystal structures of the XO were downloaded
from Protein Data Bank [https://www.rcsb.org/]. The information
was listed in Table 1.

All non-polar hydrogen atoms (hydrogens attached to carbon
atoms) of XO were merged, and partial atomic charges of the

Table 1 | Information of receptor protease
Name/
Abbreviation

Role in the process of purine
metabolism

PDB
ID

Xanthine
oxidase/
XO

Catalyze the formation of uric acid
by hypoxanthine and xanthine

1N5X [15,
16]

molecules were calculated. Heteroatoms and water molecules were
eliminated. The grid box of XO of 40× 40× 40 points was defined
by centering on the ligand in the active site (96.663, 54.963, 39.433).
With the above settings, Autodock 4.2 andAutodockVinawere used
simultaneously. Autodock Vina has a free energy scoring function,
which can estimate the ligand binding orientation and affinity. For
molecules with better Auto Dock Vina score, Auto Dock 4.2 and DS
were used to study the site of action and the bonding mechanism.

2.4. Calculation of the molecular descriptors

Molecular descriptors are formal mathematical representations of a
molecule obtained by a well-specified algorithm which is applied to
a defined molecular representation or a well-specified experimental
procedure [17]. In this paper, a good number of descriptors were
generated for the lowest energy conformer using PaDEL-Descriptor
followed by objective feature selection. It is obvious that not every
molecular descriptor affects the binding activity of ligandmolecules
to the receptor protease, and there were numerous of redundant
or unrelated descriptors. The existence of independent descriptors
increases the complexity of the prediction model. Alternatively,
it reduces the weight of key descriptors, which decreases model
prediction accuracy, therefore it is necessary to have it filtered.
Use the fhcor function in R, and this function can filter the
molecular descriptors with high correlation coeffecientin data
matrix. The correlation coefficient between molecular descriptors
is generally 0.95, but we also set as 0.99 or 0.9, depended on the
aim and condition of study. On the basis of the output file from
PaDEL-Descriptor, sixty-three chemical descriptors were chosen
(Supplementary Table 1).

2.5. Construction of structure-docking
energy relationship model

For the construction of the structure-docking energy relationship
model, MLR, PCA, and ANN were applied.

MLR is a statistical analysis method [18]. The purpose of MLR
is to establish a mathematical function, which best depicts the
desired activity Y (molecular docking binding energy) as a linear
combination of the X-variables (the molecular descriptors). The
equation is as follows:

Y=β0+β1X1+…+βpXp+ε

Where, Y = dependent variable, X1, X2, ... Xp are independent
variables, i.e., 63 molecular descriptors, ε = stochastic error term,
and β0, β1, β2 are the model’s parameters to be estimated. R
language (Version 3.4.1) was used to analyze the relationship
between the binding activities of XO and molecular descriptors,
and multiple linear regression models were established. The model
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equation was then tested by F (Fisher’s statistics) statistic, the
predicted residual diagram, Q-Q diagram, location scale diagram,
and residual and leveraged graphs.

Principal component analysis (PCA) is a useful method in dealing
with irrelevant information in original descriptor matrices [19].
The dataset of PCA procedure can summarize many dispersed
continuous descriptors into a few summary PCs, which explains as
much of the original data’s variance as possible.This tutorial uses the
prcomp () function from stats package to do the PCA. The dataset
is Cereals. And it was computed the PCA manually to apply the
Spectral decomposition theorem. 1) Standardize each column, i.e.,
subtract mean and divide by sd.2) Compute the correlation matrix
for columns 3) Compute eigenvalues and eigenvectors for corr.
matrix 4) Each eigenvalue represents the variance captured by the
corresponding principal component 5) Each eigenvector represents
the loading of the variable along the principal component.

Linear models are not sufficient to explain all the sources of
variability due to the complex nature of the relationships between
molecular structure and activity. Artificial neural networks (ANN)
are a type of machine-learning prediction method with the ability
to self-learn relationships from labeled experimental data and
generalize to unlabeled situations [20]. One of the most popular
types of ANN used in biological research is multilayer perceptron
(MLP). The MLP is a feed-forward ANN model that consists of an
input layer, hidden layer (s), and an output layer.Theneural network
is composed of many neurons connected to each other. Different
neurons represent different nodes, and different nodes represent
different output functions.

2.6. Assay for inhibition of XO activity

Inhibitory effects on XO activity were measured by a decrease in
uric acid and in superoxide. Extracts obtained by boiling water
extraction and ethanolic extraction from six Chinese traditional
herbal drugs were investigated. In brief, for each test tube, 200 µL
of various concentrations of extracts and 50 µL XO (0.52 µ/mL)
were added and incubated for 10 minutes at 37◦C, then 400 µL of
0.22 mmol/L xanthine and 3050 µL of coloration liquid (1 mmol
4-aminoantipyrine, 12 mmol phenol and 7500 U/L horseradish
peroxidase dissolved in 50 mmol/l Tris-HCl buffer) were added to
these samples and incubated for 20 minutes at 37◦C, and reactions
were terminated by adding 100 µL of 1 mol/L NaOH, and the
absorbance at 508 nm was measured. The system without the
addition of extract samples and enzymes is used as the blank control
for zero adjustment, and the calculation formula is as follows,

Inhibition rate (%) =
Ac− (As−Ao)

Ac
× 100%

Among them, Ac is the absorbance of the positive blank system
without the addition of the extract sample, As is the absorbance
of the sample group, and Ao is the absorbance of the sample blank
system without the addition of xanthine solution. The IC50 values
were calculated from percent inhibition of enzyme activity.

2.7. Detection of antihyperuricemic activity
by hyperuricemic cell model

The uric acid-reducing activity of the water and alcohol extracts of
sixChinese herbalmedicine plantswas tested using a hyperuricemia
cell model in human proximal tubule cells (HK-2 cells). The
establishment method of the cell model refers to our previous
research foundation [21]. HK-2 cells were grown to subconfluence
in normal growthmedium and seeded into 24-well plate at a density
of 1×105 cells/mL, and then the plates were incubated for 24 h
at 37 ◦C. After that, cells were washed with PBS for three times
then control and model groups were changed to new medium,
while the sample groups were changed to medium with different
concentrations of extracts. Three groups were pre-incubated for
24 h. Then PBS was provided to wash each well three times and
adenosine (2.5 mmol/L) in serum-free medium was added in
model and sample groups. The control group was maintained in
fresh medium in absence of adenosine. After incubation for 30 h,
0.005 u/mg XO was supplied to each well. Cultural supernatants
were collected at 12 h after treatment and the amount of UA was
measured be HPLC method. The quantitative HPLC separations
were conducted on a Microsorb-MV C18 column with photodiode
array detection (PDA) at 254 nm. Mobile phase A comprised of
0.52 mM sodium 1-pentanesulfonate and 0.20 M monopotassium
phosphate at pH 4.0 by adding phosphoric acid (HPLC-grade).
Mobile phase B had the same final concentrations as mobile phase
A, apart from the addition of 10% acetonitrile (v/v). The flow rate
was 1.0 mL/min, and the system was usually equilibrated for a
certain time at that flow rate before the first sample was injected.
The injection volume of sample was 20 µL and total run time was
20 min.

2.8. Statistical Analysis

Data were shown as mean ± standard deviation (SD) for three
replicates. A one-way analysis of variance (ANOVA)was performed
to evaluate the significant differences between the groups using
SPSS 20.0. p<0.05 was statistically significant.

3. RESULTS AND DISCUSSION

3.1. Molecular docking of XO with natural
compounds

First, the molecular docking energy was considered a critical
parameter for screening targeted compounds. For compounds with
lower docking energy, it showed relatively higher inhibitory activity.

In terms of XO, 311 tested samples from 6 traditional Chinese
herbs were subjected to molecular docking, in which, 59 small
molecules with a lower docking energy than the positive ligand
1N5X of XO were screened. Of the 59 XO compounds, the best
three hits (corylin, luteolin, luteolin-3’-O- beta-D-glucoside) were
considered for further evaluation (Fig. 1A). The free energy of
binding values for each ligand and their interaction with enzyme
residues were presented in Table 2. The results obtained from
the molecular docking of XO indicated that amino acid residues
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involved in the formation of hydrogen bonds included ARG880,
THR1010, ASN768, SER876, THR1010, ARG880, MOS3004,
ALA1079, GLU1261, VAL1011, ASP872, and ASP872. The sources
and classifications of XO inhibitors were shown in Fig. 1 B-C. Of
these ligands, 36.11% were reported in pueraria lobata, 16.67%
from dandelion and 16.67%were from cirsium japonicum. In terms
of species distribution, 83.05% of them were flavonoids and their
glycosides, and 11.86% were polyphenols.

Table 2 |Docking Statistics of the Compounds with XO
ReceptorsLigands Binding

Energy(Kcal/mol)
Hydrogen Bond Resides

XO

TEI -9.0 ARG880, THR1010, ASN768
Corylin -11.1 SER876, THR1010, ARG880
Luteolin -10.8 MOS3004, ARG880,

ALA1079, THR1010,
GLU1261, VAL1011

Luteolin-3’-
O-beta-D-
glucoside

-10.7 ARG880, MOS3004,
ASP872, ALA1079, SER876,
THR1010, VAL1011

3.2. Description and analysis of variables

To investigate the effect of the selected molecular descriptors on
statistical models, we considered the boxplots of statistical variables
(Fig. 2). The original boxplot in Fig. 2A showed that a substantial
number of data points were exceeding the upper whisker. There
were extreme outliers in variables VR1_DT, VR2_DT, topoRadius
and topoDiameter. The discrete anomalous values in the variables
indicated that molecular descriptors were different in the different
samples. To maintain data integrity and accuracy, it was not
necessary to predict and adjust these values temporarily, but to
adjust the variables according to the needs of the resulting model.

To further observe the relationship between the 63 independent
variables and variables (docking energy with XO), the data were
examined and identified using hierarchical cluster analysis (Fig. 2B).
Trees indicating variable clustering be observed at the top and left
of the diagram. The heatmap showed a data matrix where coloring
gave an overview of the numeric differences. Blue indicated that the
two sets of data are positively correlated, and green meant negative
correlation. Based on the analysis in Fig. 2B, there was a strong
positive correlation among a considerable number of variables, and
a negative correlation between the response and other variables.

Ten of the 63 variables were randomly selected, and scatter plot
matrix analysis was used to observe possible multiple collinearities
between the variables. The ten variables were TopoPSA, MW,
AMW, WTPT1, WTPT2, WTPT3, WTPT4, WPATH, WPOL,
XlogP, and Zagreb. Each small chart showed the correlation
between the given pairs of variables (one listed on the right, the
other listed above) and contour lines were used for the boxes on the
upper hand side of the matrix, and scatter plot for that on the lower
left-hand side of the matrix, as shown in Fig. 2C. As shown in Fig.
2C, multiple collinearities existed between variables; for example,
WTPT3 and TopoPSA, WTPT4 and TopoPSA, and WTPT3 and
WTPT4. Consequently, we chose multiple linear MLR, PCR, and
ANN to establish the structure-docking-energy relationship model,
respectively.

3.3. Multilinear regression model (MLR)

The evaluation of statistical significance of the regression equations
was performed on the basis of the values of the correlation
coefficient (R2), the mean squared error (MSE), Fisher’s criterion
(F) and the significance level (P). A higher correlation coefficient
and a lower mean squared error indicated that the model was more
reliable. A p-value smaller than 0.05 showed that the regression
equation was statistically significant. The stepwise regression
methodwas used to select the independent variables, and theAkaike
information criterion (AIC) information statistic was the criterion.
With the decrease in AIC value, the reliability of the model was
improved. Variables were gradually deleted or added, the most
significant independent variables of the samples were chosen to
further modify the model, get the optimal regression equation. The
coefficients of each variable in the regression models were shown in
Table 3.

MLR has four prerequisites, including linearity, independence,
normality, and homogeneity. In the process of constructing
regression equations, the residual analysis was used to determine
whether the data used for the experiment satisfied the above four
conditions, and the residual analysis was also used to determine
whether the model needed new independent variables to be
introduced.

The residual points obeyed the random distribution, which implied
that there was no heteroscedasticity (first) (Fig. 3A). Almost all the
residual points were close to or on the Q-Q line, which suggested
that residuals were normally distributed (second) (Fig. 3A). The
random distribution of residual points around the horizontal band
showed that the assumption of constant variance was satisfied
(third) (Fig. 3A). There were two leverage points and according
to cook’s distance, it lies around 50% and 100% Cook’s interval,
indicating that they had a bit of influence on the model properties
of XO model (fourth) (Fig. 3A). It was clear that XO model could
explain most of the variability.

The results of the model were evaluated using the coefficient of
determination (R2) and the mean squared error (MSE). From the
fitted multiple regression model, the R2 values of XO models were
0.737. Additionally, based on the F test, the differences among
groups were significant. The mean square error (MSE) for the
stepwise regression analysis of the XO model was 1.053.

3.4. Principal component regression model
(PCR)

PCA is a method that can be used to deal with irrelevant
information, unfavorable ratio of the number of descriptors and
collinearity among descriptors. PCA was done using the prcomp
function in the stats package [22]. PCA revealed 25 components
explaining 99.82% of the variance (Table 4).

As evidenced, the first four principal components explain more
than 85% of total variance, and the first six principal components
explained 90.57% of total variance. principal component regression
models were used to analyze the first four components, six
components and sixteen components respectively. It was found
that the F-test of the regression analysis of the response variable
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Figure 1 |Molecular docking of XO with natural compounds. (A) Molecular docking results of 1N5X (a), corylin (b), luteolin (c) and luteolin-3’-
O-beta-D-glucoside (d) with XO.
Proportion of sources (B) and classification (C) of XO inhibitors.
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Figure 2 |Description and analysis of variables. (A) Box-plot representation of molecular descriptors
(B) Analysis of correlation between molecular descriptors
(C) Scatter plot matrix of ten molecular descriptors.
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Figure 3 | stablishment of SDERmodel by MLR, PCR and ANN. (A) Residuals diagnostics plots for XO SDER model.
(B) Boxplot of the response variable and sixteen principal components.
(C) Artificial neural network structure.
(D) Comparison of prediction results and actual values of XO.

was significant and the R2 increased with the increase of the
number in components (Table 4). However, with the analysis
of sixteen components (explaining 99.01% of total variance) by
principal component regression, the R2 value was only about
0.489. To observe the discretization of principal components and
corresponding dependent variables, the corresponding variable
was standardized, and the boxplot of the first sixteen principal
components of the PCA was made (Fig. 3B). The distribution of
the sample data of the main components PC1, PC2, PC3, PC4,
and PC5 was discrete, and there were fewer outliers. Therefore, the
principal component regressionmodel was establishedwith the first
16 components. The coefficient of each variable was counted in

Table 5.

In the principal component regression of the XO model, a
significant correlation with R2 value was 0.489. As shown, the XO
model obtained by conventional PCR had not sufficient quality for
modeling.The reasonmay be that their components did not provide
enough information for model building. The mean square error
(MSE) for the principal component regression of the XOmodel was
1.040.
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Table 4 | Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings
Total % Of variance Cumulative % Total % Of variance Cumulative %

1 5.979 56.739 56.739 5.979 56.739 56.739
2 3.327 17.565 74.304 3.327 17.565 74.304
3 2.055 6.703 81.007 2.055 6.703 81.007
4 1.706 4.618 85.625 1.706 4.618 85.625
5 1.274 2.574 88.199 1.27 2.574 88.199
6 1.222 2.371 90.570 1.22 2.371 90.570
7 1.045 1.732 92.301 1.044 1.732 92.301
8 0.980 1.524 93.825 0.980 1.524 93.825
9 0.928 1.366 95.192 0.928 1.366 95.192
10 0.847 1.139 96.331 0.847 1.139 96.331
11 0.642 0.654 96.985 0.642 0.654 96.985
12 0.619 0.607 97.593 0.619 0.607 97.593
13 0.558 0.494 98.087 0.558 0.494 98.087
14 0.506 0.407 98.493 0.506 0.407 98.493
15 0.420 0.280 98.773 0.420 0.280 98.773
16 0.385 0.236 99.009 0.385 0.236 99.009
17 0.326 0.169 99.178
18 0.290 0.134 99.312
19 0.282 0.126 99.438
20 0.249 0.099 99.536
21 0.214 0.073 99.609
22 0.207 0.068 99.677
23 0.183 0.053 99.730
24 0.168 0.045 99.774
25 0.160 0.041 99.815

3.5. Artificial neural network (ANN)

In generally, normalization can significantly help to transposes the
input variables into the data range that the Sigmoid [0,1] and/or
Tanh [1] activation functions lied. In this paper, variable parameters
were normalized by the Komaron formula [23]. The dataset of
sixty-three independent variables was directly fed into the input
layer of the multi layered perception model and the expected result
was produced in the output layer (Fig. 3C). 239 of the 319 groups
of samples were selected at random as training samples, and the
prediction model was established. The remaining 80 groups were
used as test sets to verify the generated model. A four-layer artificial
neural network model was processed; among them the first layer
(input layer) acted as a space for the inputs fed to the network
with 63 neurons. The last layer was where the overall mapping of
the network input was made available [24]. The second and third
layers were hidden layers, and the number of neurons was 5 and 3,
respectively. Training with R to achieve the specified convergence
accuracy was used. ANN’s efficiency was assessed for different MSE
and R2 values. It was found that the values of R2 of XO model were
0.751, and the MSE value was 0.941.

3.6. Model Performance Criteria

To evaluate the predictive ability and to check the statistical
significance of the developed model, the proposed model was used
for the prediction of values of the docking energy for the test set
(Fig. 3D). The ideal regression line (y = x) was plotted as reference.

Corresponding statistical data were reported in Fig. 3D. According
to the scatter plot, there was no significant difference between
measured data and predicted data of docking energy in the MLR,
PCR and ANNmodels.This figure clearly showed that the obtained
MLR, PCR and ANN models worked well over the entire range of
the docking energy values. Furthermore, corresponding values of
the test set compounds close to the ideal regression line. In addition
to a high R2, a reliable model should also be characterized by a
low mean square error (MSE) [18]. Compared to the multilinear
regression model and principal component regression model of
XO docking energy, the performance of the ANN model was
better, with higher correlation coefficient of 0.751, and lower mean
square error (0.941) of potential to extract chemically meaningful
information (Fig. 3D). Based on the comparison of results from the
models in this study, it could be deduced that the prediction of ANN
was superior to MLR and PCR for XO docking energy.

3.7. Effects of plant extracts on XO activity
and cell model of hyperuricemia

The present results showed that all extracts were effective in
inhibiting uric acid production in a dose dependent manner (water
extracts of celery seed and dandelion were excluded). IC50 values
were calculated from linear or no-linear regression lines. The IC50

values of different extracts (Fig. 4A) showed that ethanol extract
of pueraria lobata seems to have the strongest inhibitory effect (p
< 0.05) with an IC50 of 6.14 ± 0.17 mg/mL. Overall, the XO-
inhibitory activity of the ethanol extracts was higher than that of
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Table 3 | Coefficient statistics of each variable in XO-MLRmodel
Variable XO-MLRModel
Intercept 15.987
ALogP 0.351
ALogp2 0.043
AMR 0.086
apol 49.102
bpol 0.617
ECCEN 0.003
EE_Dt -0.011
HybRatio 2.371
Kier2 0.593
Kier3 -0.372
LipinskiFailures 0.261
McGowan_Volume 74.308
MLFER_BO 0.817
naAromAtom -0.870
nAromBond 4.767
nAtom -46.580
nBondsD 2.179
nBondsS3 4.648
nC 24.346
nHBDon 0.583
nHeavyAtom 58.698
nO -5.811
nRing -1.706
nRotB 0.499
SpAD_Dt 0.090
SpDiam_Dt 0.021
SpMAD_Dt 0.312
SpMax_Dt -0.203
Sse 69.207
Sv -202.626
topoDiameter -0.363
VE1_Dt -4.171
VE2_Dt 50.457
VE3_Dt 0.008
VR3_Dt 0.031
WPATH -0.0003
WPOL 0.076
WTPT2 -10.512
WTPT3 -1.274
XLogP -0.242
AMW NA
MLFER_A NA
MLFER_S NA
topoShape NA
VR1_Dt NA
WTPT1 NA
Zagreb NA
MLFER_E NA
MLFER_L NA
nAcid NA
topoRadius NA
WTPT4 NA

Table 5 | Coefficient statistics of each component in the model
Variable XOModel
Intercept 0.346
PC1 0.004
PC2 0.016
PC3 0.012
PC4 -0.026
PC5 0.006
PC6 0.042
PC7 -0.026
PC8 -0.006
PC9 -0.003
PC10 -0.012
PC11 0.012
PC12 0.029
PC13 -0.027
PC14 0.050
PC15 -0.003
PC16 0.050

water extracts.

Cell viability was tested in accordance with Amakye et al [25] by
an MTT-reagent (Fig. 4B). The effect of sample concentration on
the production of uric acid in hyperuricemia model was verified
with each plant extract’s cell survival rate reaching 85%. Uric acid
concentration in the supernatant was determined by reversed-phase
high-performance liquid chromatography. According to Fig. 4C,
compared to the model group the ethanol extract of pueraria lobata
significantly decreased the uric acid content in the supernatant.
When the concentration of ethanol extract of pueraria was 0.5
mg/mL and 2.0 mg/mL, the yield of uric acid was 60.28% and
13.14% of the model group, respectively, which were shown in the
chromatogram of cell supernatant of the extract.

4. CONCLUSIONS

In this study, molecular docking technique was used to calculate
the inhibitory activity of natural product molecules on XO to
predict the activity of those extracts, and a structure-docking energy
relationshipmodel was used to characterize the relevant parameters
of the inhibitory activity. It was found that pueraria lobata hadmore
inhibitory ligands for XO and the extract of pueraria lobata has a
better effect on reducing uric acid. In this study, MLR, PCR and
ANN models were applied to predict the binding energy and to
find the most important descriptors that affect the docking energy.
According to the different analyses, the ANN model was the best
model to predict the binding energy of XO. Furthermore, in vitro
chemical and cell models proved that ethanol extract of pueraria
lobata had the best activity of XO inhibition and the effect of
reducing uric acid in the cell model, which was in accordance with
the molecular docking results. The model can therefore be used for
high-throughput screening of XO inhibitors of many models from
phytochemicals in an intelligent, fast and reproducible way.
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Figure 4 | Effects of plant extracts on XO activity and hyperuricemic cell model. (A) XO Activity and IC50 values of plants extracts for inhibition
of XO
(B) Effect of plant extracts on HK-2 cell viability
(C) Chromatogram of supernatant of plant extracts from celery seed, pueraria, dandelion, cirsium japonicum (left) and relative uric acid yield in
cell model (right).
* Indicates p < 0.05, and ns indicates p > 0.05.
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